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O. 0 Summary

Effect of flow field properties on the heating distribution over a 140 ° blunt cone was
determined for a Martian atmosphere using Euler, Navier-stokes (NS), viscous shock
layer (VSL) and reacting boundary layer (BLIMPK) equations. Effect of gas kinetics on
the flow field and surface heating distribution were investigated. Gas models with nine
species and nine reactions were implemented into the codes. Effects of surface catalysis
on the heating distribution were studied using a surface kinetics model having five
reactions.

1.0 Introduction

Analysis of hypersonic CO2 flOWS plays an important role in the design of thermal
protection system (TPS) for the Mars Environmental Survey Vehicle (MESUR). The
proposed configuration for MESUR is a large-angle blunt cone with a cone-half-angle of

70 °, base radius of 0.85 m and a bluntness ratio of Rn/Rb = 0.5, Fig.1. Evens et al used
an inverse method with infinite rate chemistry to study the effect of ablation in a shock layer

with non-equilibrium inviscid flow on the Viking radio blackout. 1 Recently, Candler

solved two-dimensional axisymmetric Navier-Stokes equations with multiple species and
temperatures to simulate the flow environment in front of a large-angle cone during its

high-speed aerobraking maneuvers through the Martian atmosphere. 2

The gas kinetics model used in both studies came mostly from the work of McKenzie. 3

Since then, an extensive study on gas kinetics modeling for the Martian atmosphere has

been made by Park etal. 4 In this study, both gas kinetics models are used in Viscous

Shock Layer (VSL) 5,12 and Navier-Stokes (NS) 2,6 codes to simulate the flow between the
bow shock wave of the MESUR vehicle during its entry into the Martian atmosphere. The
NS code was modified to include Park's kinetics and third body reactions with different
reaction rates. The flow near the surface of the vehicle's heat shield, was simulated using
the Boundary Layer Integral Matrix Procedure with kinetics (BLIMPK). 7 The

thermodynamic properties used in all the codes were obtained from the Janaf Tables. 8

The purpose of this study is to estimate the effect of gas and surface kinetics on the heat
flux to TPS of the MESUR vehicle, during a Martian entry.

lnviscid Flow Field

Inviscid flow properties at the surface of the heat shield were calculated using the Ames

Method of Integral Relations (AMIR) 9 which is based on the methodology developed by

Belotserkovskiy.10 The region between the body and bow shock wave is divided into

strips and the variations of the flow properties across the shock layer are represented by
polynomials which depend upon the number of strips. Conditions of regularity proposed
by Belotserkovskiy are not included in AMIR, therefore the system of equations are not
closed and no unique solution exists. However an optimized solution, which is based on
the location of the sonic point on the body, can be obtained. The structure of AMIR has
been reorganized for running on the modern super compute and these solutions agree well
with the old version of AMIR.
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Inviscidflow propertiescalculatedusingAMIR includedpressureandvelocity. The
pressuredistributionoverthesurfaceof theMESURheatshieldcalculatedusingtheone-
strip(solid line) andtwo-strip(dashedline)methodsareshownin Fig.2. In general,the
two-stripmethodpredictsahighersurfacepressureovertheforebodyof thevehicleand
higherpressuregradientsat thecornerof thevehiclethantheone-stripmethod. The
pressuredistributioncalculatedfromAMIR is usedin BLIMPK to calculatetheheating
distributionovertheMESURforebodyheatshield.

Reacting, Viscous Flow

Reacting flow properties in the shock layer were calculated using BLIMPK, NS and VSL
codes. These codes were developed to simulate non-equilibrium air flows over spacecraft
TPS during their high speed aerobraking maneuvers. The reacting boundary layer, next to
the body, was simulated using BLIMPK as outlined in Ref. 12. BLIMPK is a laminar non-
similar multi-component boundary layer procedure, which contains gas phase kinetics and
rate controlled surface reactions. The governing equations are discretized in integral matrix
form and solved by Newton-Raphson iteration.

The NS and VSL codes were used to simulate the flow throughout the shock layer. In the
NS code, fluid dynamics of a multiple-species two temperature gas kinetics model was
characterized by a set of partial differential equations. They are essentially the two-
dimensional axisymmetric NS equations expanded to account for the presence of multiple
species and temperatures. The equations are solved in a fully coupled manner; using

implicit, flux split, Gauss-Seidel line relaxation numerical techniques. 3

The VSL governing equations are a subset of the NS equations and are obtained by
retaining up to second order terms in the inverse square-root of the Reynolds number.
VSL analysis is valid through the shock layer to moderately low Reynolds number and
provides a direct means of accounting for the interactions between the inviscid and viscous
flow regimes behind the bow shock wave. The governing equations axe solved by a finite-
difference method and using an initial global solution obtained assuming a thin viscous
shock layer. Subsequent global iterations are made assuming a fully viscous shock layer
between the body and bow shock wave.

Chemical Kinetics Model

Nine species (O, 02, N, N2, NO, C, CO, CO2 and Ar) gas model with nine reactions
imployed in the reacting viscous flow codes are given below:

O2+ M1 = 20 + M1

N2 + M2 = 2N + M2

NO+M3 =N+O+M3

NO+O=O2+N

N2+O=NO+N

CO2 + M4 = CO + O M4
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CO+M5 = 0 + 0 M5

C02 + 0 = 02 + CO

CO + 0 = 02 + 0

where M represents any specie that acts as a collisional partner. Each reaction is govemed
by a forward and backward reaction rate coefficient, kf and kb, respectively (Tables 1 and
2).

If the rate of production terms in the continuity and energy equations are rewritten so that

the specie concentration and temperature appear as the unknowns 13, then the terms used in
the VSL code result in the following expressions,

where

o)i
--= 0_0i-_]i Ci ,
P

_9 (.oi Mi nr

T (p) = T Z (I3ri
r=l

(D2r +-

- _ri)[(C2r + T

Dlr
T - 13r) Lbr] ,

Clr
--- O_r) Lfr -

nr

coOi= Mi_ (F+riLfr + F'riLbr)

r=1

nr _ Lfrr,.oli = _ [F+ri + F'ri _] ,
r=l ri

Ci
i=1,2,...,ns ,

ri = Mi'
as

ri = T. Z(i-ns)jrj , i=
j=l

nj
Lfr = kfrp_r.l-Irjo_rj ,

]=1

Lbr = kbrP 13r_Jrjl_ rj
j=l

nj nj
{Zr = _.Otrj-1 ; _r = ,T, _rj-1 .

j=l j=l

if (13ri - {Zri > 0

= -(_ri - Otri) if ([3ri - Or.ri) < 0

F+ri = [3ri - O_ri

1-'- ri

(ns+l), ...., (ns+5)

else F+ri = 0

else F-ri = 0
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_urface Reactions

Stewart has demonstrated by flight experiments that surface catalysis can have a major

effect on the surface heat flux to a thermal protection system (TPS). ll These data were

correlated with predictions of the surface heating distribution along the midfuselage of the
Space Shuttle using first order surface kinetic reactions in BLIMPK. The surface
reactions consider in this study are also assumed as first order reactions,

0.5N + 0.5N -> 0.5N2

0.50 + 0.50 -> 0.502

0.5N + 0.50 -> 0.5NO

0.5C + 0.50 -> 0.5CO

0.5CO + 0.50 -> 0.5CO2

and the reaction rates are,

ki = _'i(RTw/2nMi)(1/2); i=1 to 5

Reaction 1: J1N =-klPN, J1N2 =klPN;

Reaction 2:J20

Reaction 3:J30

J3NO

Reaction 4:J40

J4co

= -k2po, J202 = k2po;

MN

= -k3(pNPO)(1/2), J3N = -k 3 _ (PNPO)(1/2),

,.MNo
= _3 MO (PNPO)(1/2) ;

= .k4(pcPo)(1/2), j4 C = .k4Ml_(pcPo)(1/2),

= k4 M--_(pcPo)(1/2);

Reaction 5:J50 = -k5(pcopo)(1/2), J5co = -k5M--_(PCOPO)0/2),

J5co 2 = k5M--_--_(PCOPO)(1/2).

These surface reactions, with specific reaction rates, were imployed in BLIMPK and VSL.
In the NS code, the effect of surface catalysis on the heat flux to the TPS is not included
and the surface was assumed to be isothermal (Tw = 1700 K) and non-catalytic. BLIMPK
predicted the heat flux to the TPS with the assumption that the boundary edge properties
were in thermal and chemical equilibrium.
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Results and Discussion

The convective heat flux to the MESUR heat shield during its high-speed aerobraking
maneuvers in the Mars atmosphere results from both sensible and chemical heating.
Sensible heating to large-angle blunt cones has been shown to be dependent on cone angle

and bluntness ratio. 14,15 In air, the stagnation point heat flux varies directly with the ratio

of the square root of the velocity gradients calculated from AMIR and the value calculated

using Newtonian theory.14

qst (du/dS)AMIR 1(1/2)
q,%50 = [(du/dS)Newtonoan'

where:

(du/dS)Newtonian = Rn ( )(1/2)

A similar relationship for large-angle blunt cones is shown for CO 2 in Fig. 3. The figure

shows that the sensible heating to the stagnation point of the MESUR is 30% to 40% lower

than to a conical shape with a half-angle of 50 °, where the velocity gradient is predicted by

Newtonian theory.

The chemical heating portion of the convective heat flux is dependent upon the non-
equilibrium flow properties in the shock layer and surface catalysis.

Predicted non-equilibrium flow properties along the stagnation point stream line obtained
using Park's and McKenzie's gas kinetics models in VSL, NS and BLIMPK codes are
compared in Fig.4 thru Fig.7. Trajectories points were chosen near where peak heating
occurs, Alt. = 40.427 km and V = 5 km/sec (condition 1) and an Alt. = 41.668 and
V = 7 km/sec (condition 2).

Predicted specie concentration profiles along the stagnation stream-line are compared in
Fig.4. The predictions were made using Park's gas kinetics model in NS (solid lines),
VSL (dash-lines) and BLIMPK (dotted-lines) solutions. The profiles from three solutions

agree well in the region near the surface of the heat shield, but deviate through the shock
layer.

Next, the effect of the gas kinetics models on the predicted flow properties along the

stagnation stream-line are compared in Fig.5 and Fig.6. Fig.5, compares the gas
temperature distribution throughout the shock layer using VSL solutions for flight
condition 1. The gas temperature throughout the shock layer predicted using McKenzie's
model is higher than values predicted using Park's, because more energy is released by the
CO2 recombination near the shock. Also, the surface temperature is higher (200 K) than

the value predicted using Park's gas kinetics model. The effect of the gas kinetics model
on the specie concentration profiles are shown in Fig.6. In the high temperature regime
(near the bow shock wave), Park's kinetics model predicts higher dissociation of CO2 than
McKenzie's kinetics model, but in the lower temperature regime (near the surface)

McKenzie's model predicts much higher recombination rates than Park's model. Specie
concentration profiles obtained from NS solutions for flight condition 2 are compared in
Fig.7. These profiles are consistent with the results plotted in Fig.6.
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Theeffectof thegaskineticmodelsandsurfacecatalysisontheheatingdistributionover
theMESURforebodyheatshieldis illustratedin Fig. 8. TheVSL andBLIMPK solutions
wereperformedassumingtheheatshieldsurfaceto befully catalyticaswell as
noncatalytic. For thecasewherethesurfaceis assumedasfully catalytic,theheating
distributionovertheheatshieldis independentof thegaskineticsmodelsfor CO2 and02
usedin thecalculation.However,for anon-catalyticsurfacethemodelusedin the
solutionshadalargeeffecton theheatingdistribution.Forbothsolutions,McKenzie's
modelresultedin higherheatingratesto thenon-catalyticsurfacethanthevaluescalculated
usingPark'smodel. Thelargestdifferencein theheatingratesoccurredusingthe
BLIMPK solutionwherethevalueswerehigherthanthosecalculatedfor recombinationof
02 to afully catalyticsurface,Fig.8a.UsingMcKenzie'smodelin theVSL solution
resultedin slightlyhigherheatingratesovertheconicalportion,but lowervaluesnearthe
stagnationregionof thenon-catalyticsurfacethanpredictedfor therecombinationof O2to
afully catalyticsurface,Fig.8b.Thisphenomenonis theresultof oxygenatomstarvation
of theCOrecombinationreactions;i.e. theoxygenrecombinationonthesurfaceconsumes
mostof theoxygenatoms(O+ O -> 02),thusit reducestheavailableoxygenatomsfor
CO2recombination(CO+ O->CO2).Surfaceheatingdistributionovertheheatshieldwas
notpredictedusingtheNScodebecauseof numericaldifficulty encounteredaroundthe
stagnationstream-lineregionandthecodewasnotconfiguredtotheflow withcoupled
energybalanceandsurfacecatalysis.

Theshockstand-offdistance predicted by VSL was about 17% smaller than the value
predicted using the NS code. The difference is the result of assuming an infinite body
length in the VSL solution,and using the actual body geometry in the NS solution where
the feedback effects from comer are included in the prediction of the shock stand-off
distance. Therefore, it follows that the velocity gradient at the stagnation point is close to a
value predicted by Newtonian theory and the heating rate to the MESUR is lower than
predicted by the VSL code, see Fig. 3.

The nose radius used in the VSL solution was adjusted using Eq. 1 to reflect the difference
between a velocity gradient predicted by Newtonian theory and one predicted by AMIR for
the MESUR vehicle. Effect of nose radius on the heating distribution over the heat shield
using VSL with Park's gas kinetics model is shown in Fig.9. In addition to the present
flight case (V = 7 km/s), a solution was also performed for V = 9 km/s. Stagnation point
heating rates in both cases were reduced about 30% by using the effective nose; thus the
results are consistent with Fig.3.
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2.0 Conclusion

This study shows the predictions of flow fields as well as surface heat transfer rates are
very sensitive to both gas and surface kinetics. The accuracy of available gas kinetics
should be carefully reexamined at high and low temperatures. So far, no research has been
conducted to understand the surface kinetics of CO2 flows! Without the knowledge of
CO2 surface catalysis, the accurate prediction of surface heating over Thermal Protection
System is unlikely. In addition, no engineering tool is available for the analysis of flows
over high angle blunted bodies (> 60 degrees) at low Reynolds number. BLIMPK is useful
for flows with relatively high Reynolds number only, and the boundary layer
nonequilibrium edge conditions have to be estimated using NS or VSL. The VSL code fails
to predict the comer effect, and becomes quite unstable as the cone half-angle becomes
large. Most of current available NS solvers encounter numerical difficulty around the
stagnation stream line region as the cone half-angle is large. Current NS solution with
coupled surface energy balance and catalysis are too expensive and time consuming for
either arcjet or design of TPS.
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Fig. 5 Pr'essui'e Distributions over Surface
70-degree sphere cone; Rn/Rb = 0.;_
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Fig. 3: Effect of Cone Angle on Stagnation Point Heating
Gamma = 1.3; AMIR solutions
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Fig.4" l_la._s _ tactic l_s Along Stagnation Streanaline
NCW witl-_ Tw = 1700 K; Ve = 7 kin/see; Rn = 0.425 m
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Fig5" Tet_perature along Stagnation Streamline
70-degree sphere-cone; NCW; REQW; Ve = 5 km/sec
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Fig 6: Species profiles along Stagnation Streamline
70-degree sphere-cone; NCW; REQW; Ve = 5 km/sec
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Fig. 7: Mass Fractions Along Stagnation Strean_line
NCW with Tw = 1700 K; Ve = 7 km/sec
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Fig. 8a: Heat Fluxes over Surface
70-degree sphere cone; Ve = 7 km/sec
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Fig. 8b" Heat Fluxes over Surface
70-degree sphere cone; EMSI = 0.9; Ve = 7 kna/sec
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Fig. 9a: S urlhce Heat Fluxes over Surface
MESUR aeroshell; Rn = 0.5 rn; Ve = 7 krn/sec
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,_urlace Heat Fluxes over SurfaceFig. 9b: -' >_-
MESUR aerosl_ell; Rn =0.5 m; Ve = 9 kn_/sec;

2.5

¢Q

a.0

1.5

1.0

0.5

0.0

\

\

' Rn\

, /
\ \

--

I

, I I I I

0.0 0.5 I.O 1.5 3.0

S/Rn

Solid lines: noncatalytic wall

Dashed lines: CO + 0 -> CO3 fully catalytic wall

VSL solution

2.5

Page 19



Form Approved

REPORT DOCUMENTATION PAGE oM8No0Z0,-0188
III I I I II I I I I I I I I I II II I

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management end Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503.

_&ENcY J
1. USE ONLY (Leave blank) 2. RE'PORT DATE 3. REPORT TYPE AND' DATtdS COVERED

September 1992 Contractor Report
4'." TITLE AND =L;BTITLE ' ' 5. FU'NDING NUMI3k;RS '

Effect of Non-Equilibrium Flow Chemistry on the Heating

Distribution Over the MESUR Forebody During a Martian Entry
6. AUTHOr(S) ....... NAS2-13210

Yih-Kang Chen

I IIII I II II I II I II I I I I I 11 I | I I III I

i re PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Sterling Federal Systems, inc.
1121 San Antonio Road A-92190

Palo Alto, CA 94303
i i I ii i II I I III i I I i

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(E=) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Washington, DC 20546-0001 NASA CR-177601

li'. gU'PPLEMENTARY NOl_ES ....................

Point of Contact: Robert A. Carlson, Ames Research Center, MS 233-15, Moffett Field, CA 94035-1000

(415) 604-6036

i E II I i i i i ii I i i i i i12a. DISTRIBUTION/AVAILABILITY STAT MENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category - 34

_1 ABSTRACT ..............................1 , (Maximum 200 words)

Effect of flow field properties on the heating distribution over a 140 degree blunt cone was determined

for a Martian atmosphere using Euler, Navier-Stokes (NS), viscous shock layer (VSL) and reacting boundary

layer (BLIMPK) equations. Effect of gas kinetics on the flow field and surface heating distribution were

investigated. Gas models with nine species and nine reactions were implemented into the codes. Effects of

surface catalysis on the heating distribution were studied using a surface kinetics model having five reactions.

I I I I I I UlllU I I I In Ill I I lUlllUUll III I ml I I

14. SUBJECTTERMS

Hypersonic flow, Surface catalysis, Non-equilibrium chemistry,

Martian entry

171 sEcURITY CLASSIFICATION I'7."$'ECURITY Ct'ASSIFICATiON IS. SEC'URITY CLi'SSlFiCA'ilbN
OF REPORT OF THIS PAGE OF ABBTRACT

Unclassified Unclassified
NSN 7540-01-280-6500

i ii i i
18. NUMBER OF PAGES

23
_6. PRI_Ec_)oE ....

A02
=o. _'l,i'TArlb'i_'OF ABSTRACT

....... i III II

Standara Form 298 (Rev. 2-8B1
Prelcrlb4H/by ANSI Bid, Z3a-la
294-,02






